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Abstract

In real-world datasets, particularly those related to finance and rainfall, the study of extreme
values is essential for understanding the return levels of extreme events and assessing finan-
cial risks. Accurate analysis of these extremes can play a crucial role in disaster prevention and
risk management. While the generalized Pareto distribution remains a widely used tool for ex-
treme value modeling, its threshold selection method poses challenges, notably the subjectivity
of the mean residual life plot. This research presents an automated, step-by-step threshold selec-
tion procedure that is computationally efficient and objective. The method evaluates interval-
based candidate thresholds and employs goodness-of-fit tests to identify the optimal thresh-
old, maximizing the p-value. Of the various combinations of estimation methods and good-
ness of fit tests assessed in this study, the Anderson Darling-L-moments and Cramer-von Mises-
Lmoments combinations demonstrated superior performance. Simulation studies indicated that
our approach offers notable performance improvements compared to widely recognized non-
automated method and several existing automated procedures. The proposed method was ap-
plied to real-life datasets from both the rainfall and financial domains, confirming its robustness.
Additionally, a bootstrap approach was used to quantify the uncertainty of the selected thresh-
old and its impact on return level estimates.

Keywords: extreme values; generalized Pareto distribution; automated; threshold selection; re-
turn level; goodness of fit.
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1 Introduction

Extreme Value Analysis (EVA) plays a pivotal role in understanding the behavior of rare but
consequential events across various fields, including finance, environmental science, and engi-
neering. These extreme values, such as record-breaking rainfall, severe droughts, or significant
fluctuations in financial markets, are crucial for informing risk assessments and decision-making
processes. Among the statistical methods employed in EVA, the Generalized Pareto Distribution
(GPD) is particularly notable for its efficacy in modeling the tail behavior of distributions, thus
enhancing our ability to predict and manage extreme events [13, 20].

The urgency of accurately assessing extreme events has become even more pronounced in the
face of climate change and economic volatility. The increasing frequency and intensity of extreme
events pose significant challenges for risk management and policy development, highlighting the
necessity for robust statistical methodologies [8]. The Peak Over Threshold (POT) method, a cor-
nerstone of Extreme Value Theory (EVT), focuses on modeling observations that exceed a defined
threshold. This technique effectively captures the essence of extreme behavior, enabling more pre-
cise risk estimates [16]. However, the selection of an appropriate threshold remains a significant
challenge. This choice is critical, as it can significantly affect both the number of exceedances and
the stability of the estimated statistical model [16, 14].

Selecting the right threshold is essential to obtain precise estimates of model parameters and re-
turn levels [7]. For the probability distribution model, a lower threshold is probably going to yield
more samples. Nevertheless, the sample also contains smaller data, which results in an underes-
timation of return significant estimates and a decreased representativeness of extreme values. As
a result, the distribution estimates are more biased but have less variance. On the other hand,
a greater threshold can guarantee that extreme values are representative. The return significant
estimates, however, are outside of the appropriate and stable range for return significant estimates
as the number of remaining samples declines, increasing uncertainty in the estimates. Therefore,
the distribution estimates are less biased but have higher variance [28].

One commonly employed graphical method for threshold selection is the Mean Residual Life
(MRL) plot. While this technique provides some insights into threshold behavior, it is fraught
with significant drawbacks. The MRL plot relies heavily on subjective interpretation, leading to
inconsistencies and potential biases among analysts [28, 30]. To avoid bias, the threshold should
be set high enough for the excesses to be adequately approximated by the GPD, but not so high
that the estimator’s variance is significantly increased as a result of a decrease in sample size (the
number of exceedances). Furthermore, the choice of threshold can significantly impact GPD pa-
rameter estimates, often resulting in biases that compromise the reliability of risk assessments [7].
Moreover, reliance on graphical methods can obscure the quantification of uncertainty related to
threshold selection, complicating the estimation of quantiles for extended return periods [44, 28].

While different approaches to automating threshold selection have been proposed (e.g., Weight
based threshold selection of GPD by Dupuis [18], automatic threshold estimation using goodness
of fit (GOF) p-value by Solari et al. [44], and threshold selection method based on the distribu-
tion of the difference of parameter estimates when the threshold is changed by Thompson et al.
[49] among others), the most popular approach remains the use of graphical method. Coles et
al. [13] provide a detailed discussion on graphical MRL plot technique, which is widely used de-
spite its subjectivity. This widespread reliance on the MRL plot underscores the challenge posed
by complex automated methods, as practitioners often prefer the subjective yet familiar graph-
ical techniques despite their limitations. Recent advances, however, have further underscored
the importance of integrating robust statistical procedures into threshold selection. For instance,
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Gaigall and Gerstenberg [22] investigate the asymptotic behavior of Cramer-von Mises (CVM)
type statistics for excesses over a confidence level and introduce bootstrap techniques to account
for parameter uncertainty, thereby reinforcing the need for methods that address estimation vari-
ability.

Similarly, Murphy et al. [37] developed an automated threshold selection methodology that
directly addresses the bias-variance trade-off, enhancing the reliability of extreme value models.
Moreover, Minguez [35] introduced an automatic threshold selection method based on weighted
mean square errors and internally studentized residuals, demonstrating improved precision over
conventional techniques in extreme rainfall modeling. Their study reinforces the need for reliable,
objective, and statistically sound procedures for determining an appropriate threshold, particu-
larly in hydrological applications. Alaswed [4] also explored graphical diagnostics for threshold
selection and evaluated multiple threshold selection plots, showing that threshold choice plots can
provide a reliable alternative for identifying stable threshold ranges while minimizing subjectivity.

Additionally, Curceac et al. [15] investigated the role of modified scale parameter estimation
in threshold stability analysis, demonstrating how adjusting the scale parameter can enhance the
robustness of automated threshold selection in extreme value modeling. These studies collectively
highlight the ongoing advancements in threshold selection methodologies, balancing automation
with statistical rigor. Additionally, Hambuckers et al. [25] proposed a simultaneous estimation
method for tail and threshold parameters in extreme value regression models, offering a more
efficient approach to threshold selection over the classical POT method. These recent contribu-
tions, together with the continued reliance on graphical methods, highlight that while automated
techniques exist, their complexity often limits widespread adoption.

Building upon these advancements, our study introduces an alternative automated threshold
selection procedure that enhances robustness while maintaining computational simplicity. Un-
like more intricate methodologies, our approach leverages GOF tests to systematically evaluate
candidate thresholds, reducing subjectivity while preserving interpretability. By systematically
evaluating multiple estimation methods in combination with GOF criteria, our approach aims to
provide a more objective and reliable foundation for modeling extreme values, improving accu-
racy in parameter estimates.

For the application of our approach in real-life scenarios, we will use two datasets. The first
dataset consists of daily rainfall accumulations at a site in South West England from 1914 to 1962,
containing 17,531 observations [14]. Additionally, we will analyse the daily closing prices of the
Dow Jones Index from 1996 to 2000 with 1304 observations to demonstrate the efficacy of our
methodology across diverse contexts.

Through this research, we aim to contribute to the growing body of knowledge in extreme
value analysis by presenting an innovative, automated, and more reliable method for threshold
selection. By enhancing the objectivity of this critical step, we hope to improve both the theoreti-
cal understanding and practical management of extreme events, ultimately contributing to more
effective risk management strategies in fields affected by rare and extreme occurrences.
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2 Methodology

2.1 Theoretical background

The GPD is a key tool for modeling exceedances above a defined threshold u in extreme value
analysis [13]. A threshold in extreme value theory refers to a predefined value above which only
the data points are considered extreme, and these exceedances are modeled to capture the tail
behavior of a distribution. The choice of an appropriate threshold is crucial for ensuring a balance
between bias and variance in model estimation [16]. Introduced by Pickands [39], the GPD is
parameterized by the scale, o and shape, { parameters. The Cumulative Distribution Function
(CDF) representing the relationship among these parameters and the threshold « can be defined
as,

1
Gla;0,6) = 1{1+£(T)] f. eso (1)

1—eXp(—%_u)7 if £ =0,
o

where, z is independent and identically distributed (iid) random variable, and for £ > 0: z > u

andfor§<0:u§:z:<u—g. The parameters ¢ > 0, —oo < £ < oo and —oo < u < oo. The

choice of § governs the tail behavior: £ > 0 corresponds to heavy tails, { = 0 to the exponential
distribution, and { < 0 implies an upper bound on the data [20, 16]. To estimate the parameters ¢
and &, our study will utilize three well-established estimation techniques: Maximum Likelihood
Estimation (MLE), L-moments, and Maximum Product Spacing (MPS) [16, 10].

Lets consider the probability density function (PDF) of GPD when ¢ # 0, which is,

1
1 r—u\ ¢ "
sring =1 (14671) € )
o o
Taking the logarithm to obtain the log-likelihood function, which can be written as,
1\ & L
log L(0,&) = —nlogo — (1+§>Zlog (1_,_51‘1 U) (3)
g
i=1
Next, we examine the scenario where { = 0. In this case, the PDF of the GPD can be expressed as,
1 Tr—u
slaio) = Texp (- 11), (4)
g ag

and the log-likelihood function can be written as,

n

log L(o) = —nlogo — %Z(in —u). (5)

i=1

The likelihood function of the GPD serves to estimate the parameters £ and o through the
maximization of the likelihood function, or, alternatively, the log-likelihood function, based on
the observed data. To estimate the parameters using MLE in this study we will be utilizing the R
packages ext Remes [23] and ismev [47].
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L-moments provide a robust framework for describing the shape of a probability distribution,
functioning as linear combinations of order statistics [5, 27]. L-moments offer greater resistance
to outliers, exhibit lower sampling variability, and remain nearly unbiased even with small sam-
ple sizes [9]. For a continuous random variable Y, the Quantile Function (QF) that defines its
distribution is expressed as Q,(p) = The value of y such that F,,(Y) = p, where 0 < p < 1 and
F,(Y) = pis the CDF of Y [50]. Hosking’s [26] comprehensive work on L-moments theory pro-
vides a foundation for its application. The r*" L-moments, expressed in terms of the QF, is defined

as,
L, = / Qu(p) Py (p)dp, (6)
where
PLA(p) = kZ_O S () () )

represents the Legendre polynomial with the " shift, and L, denotes the r*" L-moment [50].
To estimate the parameters using L-moments in this study we will be utilizing the R package
extRemes [23].

MPS is a technique used to estimate parameters in univariate statistical models [10]. This
approach involves maximizing the geometric mean of the spacings within the data, defined as the
differences in the CDF values at adjacent data points [ 10]. Given an identically distributed random

sample zy, ..., z, of size n from a univariate distribution with a continuous CDF of F'(z; §,), where
o € © is the unknown parameter to be estimated. let x(,), ..., z(,) represent the corresponding
ordered sample. For convenience, we also define () = —oc and  z(;,41) = +00. The spacings

are defined as the gaps between the values of the distribution function at adjacent ordered points
[40],

Di(0) = F(z();0) — F(x@-1);0), i=1,...,n+1L (8)
The maximum spacing estimator f is obtained by maximizing the logarithm of the geometric mean
n+1
of the sample spacings, expressed as f = arg maxgee S,,(6), where S,,( — Z log D;(

By the inequality of arithmetic and geometric means, the function S, (#) is bounded from above
by —log(n + 1), ensuring that a maximum exists at least in the supremum sense [10]. To estimate
the parameters using MPS in this study, we will be utilizing the R package eva [6].

Our approach utilizes the p-value from GOF tests in conjunction with the estimation technique
to identify the optimal threshold in the dataset, which defines the extreme values. Smaller p-values
indicate a stronger statistical incompatibility of the data with the null hypothesis, assuming the
assumptions for p-value calculations are correct, as noted by Wasserstein and Lazar [51]. This
metric, ranging from 0 (indicating total incompatibility) to 1 (indicating perfect compatibility),
evaluates the degree to which the model fits the data [24]. To conduct GOF testing, the GPD
parameters must first be estimated. In this study, we consider the Kolmogorov-Smirnov (KS),
Anderson-Darling (AD) and Cramer-von Mises (CVM) tests to determine the most appropriate
threshold point.

The KS test measures the largest absolute deviation between the Empirical Distribution Func-
tion (EDF) and the theoretical CDF, providing insight into how well the model represents the
observed data. It is defined as,

1—1
n

1

- - G(x(i);uﬁ,é)D : 9)

KS = max (‘G(ﬂc(i);%&»é) -

1<i<n

b
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where n is the sample size, z(;) denotes the it" order statistic, and G (@)su,0, f ) represents the
CDF of the GPD evaluated at x(;). Simulation studies by [12] have demonstrated that the KS test
performs well for GPD modeling, particularly when identifying discrepancies across the entire
distribution. The AD test, unlike KS, places greater emphasis on deviations in the tails of the
distribution, making it particularly useful for extreme value analysis. The AD test serves as a
statistical procedure designed to assess whether a specific sample of data originates from a speci-
fied probability distribution. In its fundamental application, the test operates under the assump-
tion that no parameters are to be estimated within the distribution being evaluated, allowing for
a distribution-free framework with corresponding critical values. However, the test is predomi-
nantly utilized in scenarios involving a family of distributions, necessitating parameter estimation.
In such cases, adjustments must be made to either the test statistic or its critical values to account
for this estimation process [46]. The AD test statistic is defined as,

n

AD = —n— %Z [(22 — 1) log G(x;); u,&,é) + log (1 — G(T(ng1-i); u,&,f))] . (10)

i=1

Here, G(x(;); u, 7, f ) denotes the estimated CDF of the GPD at the i‘" order statistic. The weighting
mechanism of the test enhances sensitivity to extreme deviations, making it one of the most pow-
erful GOF tests for identifying tail discrepancies [31, 45]. Another well-recognized GOF test for
continuous distributions is the CVM test, widely employed for assessing the conformity of sample
data to a model [11]. The CVM test statistic is given by,

2 — 112

2n

W2 1 + Z [G(:E(i);uﬁ,é) — (11)

12n P

This test is particularly useful for evaluating how well an empirical distribution function fits a
theoretical CDF [3]. As a statistical measure, it is effective in quantifying discrepancies between
observed sample data and the theoretical distribution. For GPD modeling, CVM provides robust
performance, comparable to the KS test, as reviewed by [12].

In practice, however, the theoretical null distributions of these GOF test statistics assume that
the u and the parameters &, and ¢ are known a priori. In our application, these parameters are
estimated from the data, and this estimation introduces additional variability that shifts the null
distribution of the test statistic away from its standard form [45, 29]. Such shifts can affect the ac-
curacy of the p-values, as the test statistic becomes dependent on the estimation process, resulting
in modified critical values compared to the classical theory. This dependence is particularly criti-
cal in extreme value analysis, where the tail of the distribution is inherently sparse and sensitive
to parameter uncertainty. Although various approaches, such as bootstrap resampling, have been
proposed to adjust for this effect, our study focuses on employing the p-values from the GOF tests
directly while acknowledging that these p-values are influenced by parameter estimation [17].
By carefully considering these factors, our automated threshold selection procedure is designed
to maintain its robustness across datasets of varying sizes and characteristics, thereby ensuring
more reliable inference in the modeling of extreme events.

The p-value associated with each GOF test quantifies the probability of observing a test statistic
as extreme as, or more extreme than, the one computed from the sample under the null hypothesis
[44]. Given that the null distributions of these test statistics are affected by parameter estimation,
the calculation of p-values often requires numerical approximations or resampling methods to
obtain reliable results [45]. For the KS test, the p-value is computed by comparing the observed KS
statistic to the theoretical distribution under the null hypothesis, adjusted for parameter estimation
effects [29]. The standard KS test assumes that the parameters are known, but when they are
estimated, the null distribution changes, requiring adjusted critical values [34]. In this study, we
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utilize the stats package in R, which implements methods to derive p-values from the empirical
distribution function [41].

For the AD test, the theoretical null distribution does not have a closed-form solution when
parameters are estimated [45]. Instead, the critical values are approximated through numerical
integration or simulation-based methods [46]. The dependence of the AD test on estimated pa-
rameters has been extensively studied, showing that it requires modifications in its test statistic
or critical values for accurate inference [31]. We employ the goftest package in R to compute the
p-values for the AD test [21]. Similarly, for the CVM test, the null distribution is obtained from
asymptotic approximations, which are modified when parameter estimation is involved [11]. The
CVM test is particularly sensitive to deviations across the entire distribution, making it a robust
alternative to KS and AD in extreme value settings [12]. The goftest package in R is used to
compute p-values for the CVM test, leveraging tabulated critical values for common significance
levels [21]. Since these GOF tests are employed for threshold selection in our study, the p-values
serve as key indicators of model fit, allowing us to systematically determine the most appropri-
ate threshold for GPD modeling. Given the dependency of p-values on estimated parameters,
our approach acknowledges this limitation while utilizing these values as a relative measure for
threshold selection across different candidate thresholds [44].

2.2 Threshold selection using p-value of the GOF test

This section presents a refined approach for selecting the optimal threshold in GPD modeling
that is designed to be robust across datasets of various sizes and characteristics. The methodology
systematically partitions the dataset into a fixed number of equal intervals, thereby generating a
comprehensive set of candidate thresholds that can be evaluated using GOF tests. For datasets
containing a significant number of zero values, the procedure is further adapted by computing
the means of each interval and selecting the candidate threshold based on those means exceeding
the first quantile of the dataset.

The robustness of this approach is evidenced by its consistent performance across varying
sample sizes and different parameter configurations in extensive simulation studies (Section 3.1).
Despite the inherent variability in distributional forms and parameter sets, the method consis-
tently yielded accurate and reliable threshold estimates, minimizing bias, Standard Error (SE),
and Root Mean Squared Error (RMSE). Its adaptability was further confirmed through the appli-
cation to real-world datasets with distinct characteristics, including dataset with significant num-
ber of zeros, demonstrating its practical applicability and effectiveness across a broad spectrum of
scenarios. These findings underscore the method’s resilience and suitability for diverse modeling
requirements in extreme value analysis.

Following are the steps of our threshold selection approach using p-value of the GOF test:

1. Initial Data Partitioning:

The dataset is first sorted in ascending order and divided into 200 equal intervals. The de-
cision to divide the dataset into N' = 200 intervals is based on empirical observations, as it
provides a suitable level of granularity without excessive fragmentation. While this specific
number has not been derived from a formal simulation study, it has consistently demon-
strated stable performance in determining the first candidate threshold u; across different
datasets in our analysis (for simulation study in Tables 1 and 2 as well as real-life datasets
in Sectionn 3.4). If the dataset consists of a significant number of zeros (such as in rainfall
datasets), the next step is to follow the outlined method for handling such data. However, in
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datasets where zeros are not prevalent, the median of the dataset can be selected directly as
the candidate threshold 1, bypassing the more complex step that follows. This adjustment
simplifies the process when zeros are not an issue.

2. Handling Zeros in Data:

In cases where the dataset contains significant zero values, the next step involves computing
the means My, M, ..., My for each of the 200 intervals. From these means M, M>, ..., My,
those exceeding the first quantile (1) are selected. The first candidate threshold u; is the
average of the means which are greater than the @,

M+ M +...+ My

C Y
Here, the total number of computed means corresponds to the number of intervals into
which the dataset was divided. However, only the subset of means that exceed @)1 con-

tribute to the calculation of u1, and the count of these selected means is denoted as C. This
ensures that the threshold selection process is not biased toward smaller values.

U1 where M; > Q.

3. Determining the End Point:

The endpoint of the candidate thresholds, denoted as u,, is usually around the 5th largest
observation in the dataset. However, the number of exceedances above the threshold needs
to be considered, especially in large datasets. If the dataset has at least 5000 observations,
the number of exceedances should not be less than 80. For datasets with 1000 to 5000 ob-
servations, a minimum of 20 exceedances is recommended. If the dataset contains fewer
than 1000 observations, no specific minimum for exceedances is imposed, allowing for more
flexibility in small sample sizes. These criteria ensure that the selected threshold maintains
a balance between sample size and statistical reliability which is reflected in comparatively
lower uncertainties as presented in Section 3.3 and 3.4, preventing excessive bias from too
few exceedances and consistent results which can be observed in Tables 1 and 2.

4. Selection of Candidate Thresholds:

The candidate thresholds uy, us, . . ., u, are spaced with equal intervals between them. The
total number of candidate thresholds generated in this manner is denoted as n. In other
words, n represents the count of thresholds considered for evaluation, spanning from the ini-
tial candidate u; to the final candidate u,,. Through empirical testing, we have observed that
selecting around 300 candidate thresholds provides a robust and reliable range for threshold
selection. Although no formal simulation study was conducted to determine this value, it
has proven to be a reasonable choice across multiple datasets which can be observed across
Tables 1 and 2 as well as in Section 3.4.

5. Parameter Estimation and p-value Optimization:

For each candidate threshold, the GPD parameters are estimated using the data where

x; > ug. After estimating the parameters for each threshold, a GOF test is applied to compute
the corresponding p-values. In Section 2.1, we discussed the computation of p-values from
various GOF tests. The optimal threshold uy is selected as the one that maximizes the p-
value of the GOF test, ensuring that the selected threshold provides the best fit for the tail
of the distribution.

2.3 Simulation study

The goal of this simulation study is to identify the optimal combination of GOF tests and esti-
mation techniques that enhance the effectiveness and robustness of the proposed threshold selec-
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tion methodology. This study also aims to evaluate the accuracy of the method across a range of
simulated datasets. For the simulation framework, we have employed an exponential GPD com-
posite model to generate the datasets. This property of having separate models in composite GPD
models for observations below and above the threshold value is desirable when the upper tail ob-
servations are heavily skewed or believed to be distributed differently compared to the rest of the
data [1]. By utilizing this composite model, we can rigorously test the performance of the pro-
posed threshold selection method under controlled conditions, ensuring its applicability across
diverse dataset structures. The composite models can generally be defined as,

pfi(x]0), if x < g,
7 {umgum,ﬁx>w, 12)
where
p= o) (13)

o+ e~ uo

The a represent the tail index and X denotes the rate parameter. The model divides the distribution
at the threshold v, distinguishing the tail behavior from the bulk of the data. The PDF of the
underlying distribution is given by,

fialt) = o (14)
fitale) = 25 (15)

The data in the lower tail are modeled by the probability density function f;(z|f), assumed to
follow an exponential distribution with A as the rate. Observations in the upper tail are modeled
using the probability density function f5(z|6), which corresponds to the GPD [48, 2]. The parame-
ter p represents the mixing weight, as discussed by Abu Bakar [2]. Further insights into composite
models, especially the exponential-Pareto composite model, are elaborated by Majid and Ibrahim
[32] and Teodorescu et al. [48].

The simulation study was conducted within the RStudio environment, leveraging its compre-
hensive toolset for statistical computing and data analysis [42]. The steps of simulation are as
follows:

Step 1: Dataset generation: Two sets of parameters will be used to generate datasets from the
exponential-GPD composite model:

o Set 1: rate, A = 0.303 (exponential), threshold, u = 35, scale, o = 12.5, and shape,
£ = 0.010 for the GPD component.

e Set 2: rate, A = 0.250 (exponential), threshold, v = 11.4, scale, o = 5.0, and shape,
& = —0.050 for the GPD component.

The parameter sets were considered based on real life datasets. The sample sizes con-
sidered will be 500, 1000, and 5000, representing small to large datasets. Random num-
bers are generated using the gendist package, as discussed by Abu Bakar [2], which
simulates from a variety of composite models, including the exponential-GPD.

Step 2: Automated threshold selection: The automated threshold selection methodology (de-
tailed in Section 2.2) is applied to each generated dataset to determine the optimal
threshold for the GPD component.

Step 3: Repetition for statistical analysis: Steps 1 and 2 are repeated 1000 times for each com-
bination of sample size and parameter set. The thresholds are stored to compute bias,
RMSE and SE, enabling robust performance evaluation.
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Step 4: Additional comparative methods: Thompson’s [49] and Solari’s [44] methods are
applied to estimate thresholds. These methods allow quantification of threshold un-
certainty along with our automated threshold selection method, unlike the MRL plot
which lacks objectivity [44].

Step 5: Threshold uncertainty estimation: To assess the uncertainty in threshold selection,
the bootstrap percentile method is employed. This involves generating 5000 bootstrap
samples for each dataset using both parameter sets. Thresholds are recalculated for
each sample, and confidence intervals are constructed based on the distribution of these
thresholds. Thompson’s and Solari’s methods are used for comparison.

Step 6: Return level uncertainty analysis: A second simulation examines the uncertainty in es-
timating 50, 100, and 1000-year return levels. For each bootstrap sample, the threshold
is recalculated using the core methodology, and return levels are estimated for each re-
turn period. Confidence intervals are calculated using the bootstrap percentile method.
Both Thompson’s and Solari’s methods are compared, and return levels are evaluated
for both parameter sets using a sample size of 5000 (the exact same datasets as in Step
5).

2.4 Bootstrap percentile method

The bootstrap percentile method is a resampling technique commonly used to estimate confi-
dence intervals [49]. It involves generating multiple bootstrap samples from the original dataset
and recalculating the statistic of interest (in this case, thresholds or return levels). Confidence in-
tervals are then constructed from the distribution of these recalculated statistics. As was discussed
by Mooney et al. [36] along with Efron and Tibshirani [19], the steps of the bootstrap percentile
method are as follows:

Step 1: Generate B bootstrap samples from the original dataset. For our study, we considered
B = 1000.

Step 2: For each bootstrap sample, calculate the desired statistics which are threshold and re-
turn level.

Step 3: Sort the bootstrap estimates.

Step 4: The lower and upper bounds of the confidence interval are taken from the percentiles
corresponding to the desired confidence level (e.g., 95% confidence interval).

3 Results and Discussion

3.1 Selection of optimal pair of method of estimation and GOF

Determining the most suitable GOF test alongside the optimal estimation method is paramount
to accurately identifying thresholds within the GPD. As outlined in Section 2, this study consid-
ers three estimation methods alongside three GOF tests, resulting in nine possible combinations.
For each combination, the bias, SE, and RMSE of the estimated parameters are assessed, providing
insight into the accuracy and consistency across different sample sizes. The goal is to identify com-
binations that yield results with both minimal bias and high reliability, aligning with the study’s
focus on robust and reliable outcomes. As discussed in Section 2.3, there are 2 sets of parameters
to be considered for the simulation study on the selection of the optimal pair of the method of
estimation and GOF alongside a comparison with the existing method. For clarity, the metrics
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that are used to evaluate the performance of the threshold selection procedure in Tables 1 and 2
are discussed below:

e E[u], E[6] and E[£]: These represent the expected (mean) values of the determined thresh-
old u, 5, and é across all simulation runs.

e p-value: The p-value reported in the Tables 1 and 2 is the average p-value obtained from the
GOF tests over the simulation runs.

e Bias: Bias is defined as the difference between the expected estimate and the true parameter
value,

Bias = E[f] — 0,

where 6 represents the estimated parameter and 6 is the corresponding true value.

e SE (Standard Error): The standard error quantifies the variability of the estimator and is
calculated as,

N
~ 1 - . . .
where 0 = N E 0; is the mean estimate across N simulation runs.
i=1

e RMSE (Root Mean Squared Error): RMSE is defined as,

RMSE = /Bias® + SE?,

providing an overall measure of estimation accuracy.

Table 1 represents results obtained from the first set of parameters (A=0.303, ©=35.000,
0=12.500 and £=0.010) for our automated threshold selection on every possible combination
method of estimation and GOF test over different sample sizes. Analysis of the results presented
in Table 1 reveals that the most reliable outcomes are observed when considering the combined
performance of the CVM with L-moments and the AD with L-moments. Although these combina-
tions do not consistently yield the most precise estimates, a detailed examination of the estimated
parameter values, bias, SE, and RMSE indicates that they approximate the true parameters closely.

Specifically, while the CVM-L-moments pairing may not always provide optimal results for
the u and o, it excels in estimating the {. Conversely, the AD-L-moments combination demon-
strates strong performance across all parameters and sample sizes. Notably, for a sample size of
500, the AD-L-moments combination exhibited a negative bias for the shape parameter; neverthe-
less, it achieved among the lowest bias (-0.021), RMSE (0.023), and SE (0.010) for this parameter.
According to Ramachandran and Tsokos [43], it is a well-known phenomenon that the accuracy
level rises as the sample size increases. So as anticipated, the accuracy of all combinations tends
to improve with larger sample sizes.
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Table 1: The table reports the results obtained from the simulation study for the first set of parameters including the RMSE, bias, SE and average p-value at different sample sizes for KS, AD and CVM for

each estimated parameter. In this table, u is the determined threshold.

Sample Method R A U o
Sizlz GOF | ¢ estimation | CL%) | ELOT | ELE] | prvalue o pias T SE | RMSE | Bias | SE | RMSE BgiaS SE
MLE 36.715 | 13.281 | -0.048 | 0989 | 1.777 | 1.715 | 0.465 | 0.817 | 0.781 | 0.240 | 0.060 | -0.058 | 0.015
KS | L-moments | 33.093 | 12.727 | -0.013 | 0.991 | 1.950 | -1.906 | 0.413 | 0.285 | 0.228 | 0.172 | 0.025 | -0.023 | 0.009
MPS 39592 | 11.172 | 0.294 | 0993 | 4614 | 4592 | 0450 | 1.355 | -1.327 | 0.274 | 0.285 | 0.284 | 0.025
MLE 33.883 | 11.986 | 0.046 | 0987 | 1.00 | -1.116 | 0.440 | 0.537 |-0513 | 0.161 | 0.038 | 0.037 | 0.011
500 | AD | L-moments |32.918 | 12.685 | -0.011 | 0.993 | 2.118 | -2.081 | 0.393 | 0.257 | 0.185 | 0.178 | 0.023 | -0.021 | 0.010
MPS 36918 | 11479 | 0237 | 0994 | 1.968 | 1.918 | 0440 | 1.056 | -1.021 | 0273 | 0.228 | 0.227 | 0.024
MLE 37224 | 12.872 | -0.025 | 0987 | 2.270 | 2.224 | 0458 | 0434 | 0.373 | 0.223 | 0.039 | -0.036 | 0.016
CVM | L-moments | 32.808 | 12.677 | 0.000 | 0.989 | 2.227 | -2.191 | 0.399 | 0.244 | 0.177 | 0.168 | 0.013 | -0.010 | 0.009
MPS 38723 | 11106 | 0273 | 0992 | 3751 | 3.723 | 0453 | 1412 | -1.393 | 0.228 | 0.265 | 0.264 | 0.024
MLE 31.902 | 13.086 | -0.019 | 0984 | 3.117 |-3.097 | 0.349 | 0.597 | 0.586 | 0.114 | 0.029 | -0.029 | 0.006
KS | L-moments | 31.361 | 12513 | 0.012 | 0.990 | 3.655 | -3.638 | 0.355 | 0.100 | 0.013 | 0.099 | 0.005 | 0.003 | 0.005
MPS 33.095 | 11.700 | 0.117 | 0.986 | 1.937 | -1.904 | 0.351 | 0.806 | -0.799 | 0.110 | 0.108 | 0.107 | 0.007
MLE 32453 | 13.000 | -0.016 | 0.986 | 2.570 | -2.546 | 0.347 | 0.516 | 0,500 | 0.127 | 0.026 | -0.026 | 0.006
1000 | AD | L-moments | 31.970 | 12.456 | 0.018 | 0.991 | 3.050 | -3.029 | 0.350 | 0.115 | -0.043 | 0.106 | 0.009 | 0.008 | 0.005
MPS 33793 | 11.601 | 0.127 | 0989 | 1.258 | -1.206 | 0.356 | 0.906 | -0.898 | 0.117 | 0.117 | 0.117 | 0.008
MLE 33.036 | 13.110 | -0.021 | 0980 | 1.994 |-1.963 | 0.349 | 0.623 | 0.610 | 0.126 | 0.031 | -0.031 | 0.006
CVM | L-moments | 31.892 | 12.453 | 0.019 | 0.987 | 3.127 | -3.107 | 0.349 | 0.113 | -0.046 | 0.103 | 0.010 | 0.009 | 0.005
MPS 34152 | 1159 | 0.131 | 0984 | 0919 | -0.847 | 0.356 | 0.910 | -0.903 | 0.114 | 0.121 | 0.121 | 0.008
MLE 33580 | 12.895 | 0.005 | 0984 | 1.466 | -1.420 | 0.366 | 0.400 | 0.400 | 0.050 | 0.007 | -0.006 | 0.002
KS | L-moments | 33.836 | 12.741 | 0.014 | 0990 | 1.219 | -1.164 | 0.363 | 0.246 | 0.241 | 0.050 | 0.004 | 0.004 | 0.003
MPS 34550 | 12.400 | 0.050 | 0.984 | 0577 | -0.449 | 0362 | 0.122 | -0.100 | 0.051 | 0.040 | 0.040 | 0.003
MLE 33574 | 12.883 | 0.005 | 0987 | 1.473 | -1.426 | 0.369 | 0.387 | 0.383 | 0.055 | 0.006 | -0.005 | 0.003
5000 | AD | L-moments |33.747 | 12.680 | 0.018 | 0.991 | 1.306 | -1.253 | 0.369 | 0.187 | 0.180 | 0.051 | 0.008 | 0.008 | 0.003
MPS 34.045 | 12.331 | 0.052 | 0987 | 1.025 | -0.955 | 0371 | 0.177 |-0.170 | 0.053 | 0.042 | 0.042 | 0.003
MLE 33.196 | 12.843 | 0.006 | 0981 | 1.841 | -1.804 | 0.371 | 0.346 | 0.343 | 0.051 | 0.005 | -0.004 | 0.003
CVM | L-moments | 33.342 | 12.768 | 0.014 | 0.988 | 1.700 | -1.659 | 0.371 | 0.272 | 0.268 | 0.050 | 0.005 | 0.004 | 0.003
MPS 34.063 | 12.400 | 0.050 | 0981 | 1.008 | -0.937 | 0.371 | 0.116 | 0.100 | 0.051 | 0.040 | 0.040 | 0.003
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Further examination of Table 1 illustrates that combinations involving MPS yield highly accu-
rate estimates for u, although they tend to diverge from optimal accuracy for other parameters,
particularly . In summary, the bias, SE, and RMSE values for u, o, and ¢ suggest that the AD-
L-moments and CVM-L-moments combinations are commendable choices, positioned at the up-
per echelon of accuracy. The overall findings from this simulation study underscore that either
the AD-L-moments or CVM-L-moments combination is a sound selection across varying sample
sizes.

The findings derived from the second parameter set (A = 0.250, v = 11.400, ¢ = 5.000,
and ¢ = —0.050), displayed in Table 2, illustrate notable consistency and precision in the AD-
L-moments combination, particularly for estimating u and other parameters across different sam-
ple sizes. For the smallest sample size of 500, the AD-L-moments combination yielded a bias as
low as 0.001 for &, along with highly accurate estimates for u and ¢, with biases of -0.099 and
-0.686, respectively. The parameter estimates across other sample sizes also display strong align-
ment with the true values, with close examination of biases, SE, and RMSE revealing a minimal
deviation. Although the CVM-L-moments combination may not perform optimally for v and o,
it consistently provides accurate estimates for o and £. As expected, all combinations show an
improvement in accuracy as the sample size increases. A deeper analysis of Table 2 once again
further reveals that combinations involving MPS offer high accuracy for « but consistently lack
precision in estimating . Therefore, with respect to bias, SE, and RMSE for v, ¢, and &, the AD-
L-moments and CVM-L-moments combinations emerge as the most favorable choices, occupying
the upper range of accuracy. Overall, the simulation study suggests that the AD-L-moments and
CVM-L-moments combinations are robust choices across varying sample sizes, underscoring their
suitability for precise parameter estimation.

This simulation study systematically evaluates nine combinations of estimation methods and
GOF tests to identify the optimal pairing for threshold selection within the GPD. The analysis,
conducted across two parameter sets and multiple sample sizes, emphasizes bias, SE, and RMSE
as performance indicators. Results underscore the reliability of the AD-L-moments and CVM-
L-moments combinations, both of which show high accuracy and consistency, especially for the
critical shape parameter, {. Despite minor variability, AD-L-moments consistently performs well
across all parameters and sample sizes, maintaining minimal bias even at smaller samples, while
CVM-L-moments proves particularly robust in larger sample contexts. Conversely, combinations
with MPS, though effective for the threshold parameter u, demonstrate lower precision for &.
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Table 2: The table reports the results obtained from the simulation study for the second set of parameters including the RMSE, bias, SE and average p-value at different sample sizes for KS, AD and CVM
for each estimated parameter. In this table, v is the determined threshold.

Sample Method . 2 u G £
Sizlz GOF | ¢ estimation | T | ELOT | ELS] | pvalue e e T SE | RMSE | Bias | SE | RMSE | Bias | SE
MLE 12.547 | 4463 | -0.106 | 0.989 | 1.157 | 1.147 | 0.157 | 0.540 | -0.536 | 0.071 | 0.058 | -0.057 | 0.015
KS | L-moments | 11.426 | 4350 | -0.062 | 0991 | 0.142 | 0.026 | 0.141 | 0.652 | -0.650 | 0.056 | 0.015 | -0.012 | 0.009
MPS 13.637 | 3707 | 0238 | 0.994 | 2.242 | 2.237 | 0.151 | 1.294 | -1.292 | 0.072 | 0.289 | 0.288 | 0.025
MLE 11476 | 4193 | -0.013 | 0986 | 0.167 | 0.076 | 0.148 | 0.808 | -0.806 | 0.057 | 0.039 | 0.037 | 0.011
500 | AD | L-moments | 11301 | 4.314 | -0.049 | 0.992 | 0.164 | -0.099 | 0.132 | 0.688 | -0.686 | 0.056 | 0.009 | 0.001 | 0.009
MPS 12.604 | 3.898 | 0.177 | 0994 | 1213 | 1.204 | 0.148 | 1.104 | -1.102 | 0.081 | 0228 | 0.227 | 0.024
MLE 12.638 | 4434 | -0.096 | 0.985 | 1247 | 1.238 | 0.154 | 0.570 | -0.566 | 0.073 | 0.048 | -0.046 | 0.016
CVM | L-moments | 11.247 | 4.356 | -0.049 | 0.989 | 0.203 | -0.152 | 0.135 | 0.645 | -0.643 | 0.055 | 0.009 | 0.001 | 0.009
MPS 13304 | 3.814 | 0204 | 0.991 | 1.910 | 1.904 | 0.150 | 1.187 | -1.185 | 0.083 | 0.255 | 0.254 | 0.025
MLE 10.990 | 4539 | -0.082 | 0.983 | 0427 |-0.409 | 0.120 | 0.462 | -0.460 | 0.039 | 0.032 | -0.032 | 0.006
KS | L-moments | 10.714 | 4347 | -0.041 | 0990 | 0.695 | -0.685 | 0.121 | 0.653 | -0.652 | 0.033 | 0.009 | -0.008 | 0.005
MPS 11423 | 4074 | 0.052 | 0986 | 0.123 | 0.023 | 0.121 | 0.926 | -0.925 | 0.038 | 0.103 | 0.102 | 0.008
MLE 11.074 | 4506 | -0.076 | 0.985 | 0346 |-0.325 | 0.118 | 0.496 | -0.494 | 0.041 | 0.027 | -0.027 | 0.007
1000 | AD | L-moments | 11021 | 4.289 | -0.032 | 0.992 | 0.396 | -0.378 | 0.119 | 0.711 | -0.711 | 0.036 | 0.017 | 0.017 | 0.006
MPS 11.469 | 4.044 | 0.056 | 0990 | 0.140 | 0.069 | 0.121 | 0.956 | -0.956 | 0.040 | 0.106 | 0.106 | 0.008
MLE 11.274 | 4484 | 0075 | 0979 | 0173 |-0.126 | 0.119 | 0517 | -0.516 | 0.040 | 0.025 | -0.025 | 0.007
CVM | L-moments | 10.901 | 4.313 | -0.035 | 0.988 | 0.512 | -0.498 | 0.118 | 0.687 | -0.687 | 0.035 | 0.016 | 0.016 | 0.005
MPS 11.750 | 4.013 | 0.065 | 0.984 | 0370 | 0.350 | 0.121 | 0.987 | -0.987 | 0.040 | 0.116 | 0.116 | 0.008
MLE 11.704 | 4422 | -0.055 | 0.981 | 0328 | 0.305 | 0.123 | 0.577 | -0.577 | 0.017 | 0.006 | -0.005 | 0.003
KS | L-moments | 11.799 | 4372 | -0.044 | 0989 | 0418 | 0.399 | 0.122 | 0.627 | -0.627 | 0.017 | 0.006 | 0.006 | 0.003
MPS 11.874 | 4255 | -0.012 | 0983 | 0489 | 0474 | 0.123 | 0.745 | -0.745 | 0.018 | 0.038 | 0.038 | 0.003
MLE 11523 | 4.434 | -0.055 | 0985 | 0.174 | 0.123 | 0.123 | 0.565 | -0.565 | 0.018 | 0.006 | -0.005 | 0.003
5000 | AD | L-moments | 11526 | 4.361 | -0.04 | 0.991 | 0.177 | 0.126 | 0.124 | 0.639 | -0.638 | 0.018 | 0.010 | 0.009 | 0.003
MPS 11.660 | 4254 | -0.01 | 0986 | 0.288 | 0260 | 0.126 | 0.746 | -0.746 | 0.020 | 0.040 | 0.040 | 0.003
MLE 11531 | 4.443 | -0.057 | 0978 | 0.182 | 0.131 | 0.126 | 0.557 | -0.556 | 0.017 | 0.007 | -0.007 | 0.003
CVM | L-moments | 11.355 | 4.403 | -0.044 | 0.988 | 0.134 | -0.044 | 0.126 | 0.596 | -0.596 | 0.017 | 0.005 | 0.005 | 0.003
MPS 11.721 | 4265 | -0.013 | 0980 | 0.344 | 0.321 | 0.124 | 0.734 | -0.734 | 0.018 | 0.037 | 0.037 | 0.003

RLEERLNA

668 - 18 (5207)668-1£8 :(€)61 195 YN *[ uvmshvipy



Alif et al. Malaysian ]. Math. Sci. 19(3): 871-899(2025) 871 - 899

So, one might think about using MPS (particularly with AD) to estimate the threshold value
first and then, apply other methods of estimation to estimate o and ¢, but this will make the core
methodology more complex. On the other hand, as an estimation method, MLE also performs
well when the sample size is larger. However, as noted by [33], outliers in the data can lead to
unreliable sample estimates and MLE results, as seen in the smaller sample sizes in Tables 1 and
2.

So, these findings validate AD-L-moments and CVM-L-moments as robust choices, especially
in applications requiring precise modeling of extreme values, and highlight their suitability for
diverse sample sizes in GPD threshold selection.

3.2 Comparison with the existing automated threshold selection methods

Over the years, numerous approaches have been developed for automated threshold selection
within the GPD. For this study, we have chosen two computationally efficient and effective meth-
ods: those proposed by Solari et al. [44] and Thompson et al. [49]. Solari et al. [44] propose
an automated threshold selection procedure that relies on the modified version of the Anderson-
Darling EDF statistic to identify an optimal threshold. Their method involves selecting candidate
thresholds by incrementally examining peaks in the data through a moving window (without
stating any exact number of candidate thresholds) and determining the threshold at which the
AD statistic meets a predetermined criterion. In their approach, bootstrapping is employed to
quantify threshold uncertainty and assess its impact on high return period quantiles. Extensive
testing on simulated data and four precipitation and river flow datasets further substantiated the
method’s robustness. Comprehensive insights into their approach can be found in [44].

In contrast, our method adopts a comprehensive yet operationally simple strategy. We generate
a fixed number of candidate thresholds by partitioning the dataset into equal intervals; this exten-
sive candidate threshold set increases the likelihood that the optimal threshold is among those
considered, thereby enhancing the robustness of the threshold selection process. For datasets
with significant zeros, we further refine the candidate set by computing the interval means and
selecting those above the @); of the dataset. Importantly, our method relies on widely used GOF
tests (KS, AD, and CVM) and standard parameter estimation techniques (MLE, L-moments, and
MPS) rather than complex or modified versions, making it both operationally inexpensive and
broadly accessible. In our simulation studies (Tables 1 and 2), we demonstrated that both the
CVM-L-moments and AD-L-moments combinations yield consistently robust results across var-
ious sample sizes and parameter sets. This multi-criteria, data-driven approach contrasts with
Solari et al.’s method, which focuses on a single GOF test and estimation strategy, thereby offer-
ing greater flexibility and appeal to users from diverse disciplines. Moreover, keeping the base
methodology in mind, our method does provide the grounds for modification by incorporating
different types of GOF tests and methods of estimation (supported by simulation study) to be
tailored for specific applications and yield favorable results.

On the other hand, Thompson et al. [49] proposed an efficient, automated approach to select-
ing thresholds for GPD that is both computationally economical and conceptually straightforward.
Their method leverages the distributional behavior of parameter estimates across varying thresh-
olds to identify optimal threshold levels. This technique has been applied to rainfall and wave
height data to demonstrate its practicality and reliability. To quantify uncertainty in threshold
selection, Thompson et al. [49] used the bootstrap method, assessing its impact on return level
estimation. They further validated their approach through a simulation study, comparing it to the
established JOINSEA software. Additionally, they introduced a method to allow the threshold
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choice to adjust dynamically based on covariates, such as the cosine of wave direction, enhancing
flexibility and applicability.

For a direct comparison of both [44] and [49 ] methods with our automated threshold selection
approach, Table 3 presents the results obtained by applying the AD-L-moments combination to
the dataset from parameter set 1, as specified in Section 2.3. This table provides a comparative
analysis of all three threshold selection methods using identical datasets. Across all sample sizes,
our approach demonstrates overall superior accuracy and consistency in determining v compared
to the methods proposed by Solari et al. and Thompson et al. Notably, there is an exception:
Solari’s method yields exceptionally low bias and RMSE values for u at a sample size of 1000,
with a bias of -0.162. This outcome stands out as the most precise result among the automated
methods discussed. However, at sample sizes of 500 and 5000, Solari’s approach shows higher
bias and RMSE for u, although estimates for the remaining parameters remain accurate. Similarly,
Thompson’s method also exhibits improved accuracy at a sample size of 1000, with reduced bias
and RMSE relative to other sample sizes, yet it still deviates from the actual threshold.

Table 3: Comparison of the three methods in terms of threshold determination for parameter set 1.

Method | Sample Size | E[u] u
RMSE | Bias SE
500 27102 | 7914 | -7.898 | 0.511
Solari 1000 34.837 | 0.569 | -0.162 | 0.546
5000 54.314 | 19.323 | 19.314 | 0.564
500 20.091 | 14.909 | -14.909 | 0.050

Thompson 1000 27521 | 7479 | -7.478 | 0.120
5000 44596 | 9.599 | 9.596 | 0.244
500 32918 | 2.118 | -2.081 | 0.393
Our 1000 31.970 | 3.050 | -3.029 | 0.350
5000 33.747 | 1.306 | -1.253 | 0.369

Table 4: Comparison of the three methods in terms of threshold determination for parameter set 2.

Method | Sample Size | E[u] u.

RMSE | Bias SE
500 9.529 | 1.878 | -1.870 | 0.173
Solari 1000 12.059 | 0.683 | 0.659 | 0.179
5000 18.093 | 6.695 | 6.693 | 0.173
500 6.785 | 4.614 | -4.615 | 0.018
Thompson 1000 9.444 | 1.956 |-1.955 | 0.042
5000 14.958 | 3.559 | 3.558 | 0.086
500 11.301 | 0.164 | -0.099 | 0.132
Our 1000 11.021 | 0.396 | -0.378 | 0.119
5000 11.526 | 0.177 | 0.126 | 0.124

Similarly, Table 4 provides a comparison of all three threshold selection methods for parameter
set 2 (see Section 2.3), each applied to identical datasets. Consistently across all sample sizes,
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our method demonstrates a notable advantage in consistent accuracy in determining « over the
methods by Solari et al. and Thompson et al. Although Solari’s technique achieves particularly
low bias and RMSE for u at a sample size of 1000, with a bias of 0.659, our approach yields even
more precise outcomes, achieving a bias of -0.378 for u. However, at sample sizes of 500 and 5000,
Solari’s method shows increased bias and RMSE for . Similarly, Thompson’s approach improves
in bias and RMSE at a sample size of 1000 compared to smaller and larger samples, though it
remains less accurate than our method relative to the actual threshold.

3.3 Threshold and return level uncertainties

Our research incorporates two distinct real-world datasets: daily rainfall data with over 17,000
observations, representing a large-scale dataset, and the daily closing prices of the Dow Jones
index, which has around 1,300 observations, representing a comparatively smaller dataset. The
combination of these datasets, each from different domains and with contrasting sizes, serves to
demonstrate the versatility and generalization of our method across varied applications. Addi-
tionally, these datasets align with the scale of many real-world data sources, where observational
counts can range significantly depending on the field. In our simulation study, we preemptively
accounted for these variations by setting up three distinct sample sizes: 500, 1000, and 5000, rep-
resenting small, moderate, and large datasets, respectively.

This approach not only aligns with common scales found in practical datasets but also helps
create a simulation framework that can address diverse data sizes across disciplines. The selection
of 5000 as the large dataset size was made with the real-life size of the rainfall data in mind, as
it captures the large-sample dynamics we aimed to replicate. Simultaneously, 5000 is reasonably
close to the 1,300 observation size of the Dow Jones index data, allowing us to analyze uncertain-
ties in a dataset size that bridges both the large-scale data, such as the rainfall dataset, and smaller
but substantial datasets like the Dow Jones index. This choice also enhances the practical rele-
vance and methodological rigor of our uncertainty analysis. By adopting 5000 as a representative
large sample, we enable meaningful comparisons with existing automated methods while also
achieving a level of statistical power and stability essential for reliable uncertainty estimation with
the bootstrap percentile method.

To evaluate the uncertainties associated with our approach, we examine the results for both
parameter sets 1 and 2, focusing on a sample size of 5000 across each combination of GOF and
method of estimation. Based on the simulation findings in Section 3.1, where AD-L-moments and
CVM-L-moments emerged as promising combinations, and the comparison analysis in Section
3.2, which further utilized AD-L-moments, this pair will be the primary focus for threshold un-
certainty analysis. Notably, we found that the AD-L-moments combination is among those with
the lowest uncertainty levels for both threshold and return levels, reflecting its robustness for both
parameter sets.

To assess threshold and return level uncertainties across the three automated threshold selec-
tion methods, an identical dataset of sample size 5000 from both parameter sets was applied.
Table 5 provides a direct comparison of threshold uncertainties for parameter set 1, showing
that Thompson’s method achieved the narrowest 95% Confidence Interval (CI), while Solari’s
approach displayed the widest. Although Thompson’s method yielded the least threshold un-
certainty, it produced a considerable bias in determining w, which is 14.683, in contrast to our
method’s lower bias of -3.246. Additionally, threshold uncertainty from our approach remains
moderate, reinforcing its effectiveness.
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Table 5: Comparison of the three methods in terms of threshold uncertainties for parameter set 1. In this table, u is the determined threshold
value.

Method U CI Width of CI
Thompson | 49.683 | [27.210, 52.570] 25.360
Solari 57.766 | [27.049, 81.909] 54.860
Our 31.754 | [16.544,50.769 ] 34.225

Table 6 presents return level estimates for 50, 100, and 1000-year return periods, along with
corresponding uncertainties, across the three automated threshold selection methods, using the
same dataset as in Table 5 for parameter set 1. Here, the bootstrap percentile approach incorporates
the entire threshold selection process to compute 95% CI for each return period. As highlighted
by Coles et al. [13], the threshold u is fundamental to return level estimation, and is define as,

R u—l—g[(rnyﬁu)é_l , if&#£0,

Z, = (16)

u—i—&log(rnyb;u), if £ =0,

where 3, is the probability of any value exceeding the threshold point u, 8, = P(X > u). The es-
timated value of ﬁu is known as the empirical threshold exceedance. The estimate of the level Z, is
exceedance on average once every r observation is obtained. In other words, Z,. is the r observation
return level. Giving return levels on an annual scale, however, is frequently more practical. This
way, the r year return level represents the level anticipated to be exceeded once every r year. This
corresponds to the t-observation return level with ¢ = rn, if there are n, observations annually.
Hence, it is also important to evaluate the bias in « estimates to enhance forecast reliability.

Table 6: Comparison of the three methods in terms of return level uncertainties for parameter set 1 at 50, 100 and 1000 years return periods.

Method | Return period | Return Level CI
50 114.964 [93.641, 143.362]
Thompson 100 121.052 [95.726, 156.509]
1000 139.334 [100.304, 208.546]
50 132.141 [94.767, 156.807]
Solari 100 147.122 [98.402, 180.489]
1000 210476 | [104.406, 331.574]
50 114.891 [95.240, 142.811]
Our 100 121.162 [97.851, 156.672]
1000 140.306 [104.151, 206.162]

In Table 6, our method and Thompson’s approach show closely aligned return level estimates
and Cl across the return periods. However, Thompson’s method reveals a substantial bias of 14.683
in determining v, in contrast to our method’s lower bias of -3.246, indicating a more accurate
threshold estimation in our approach. Meanwhile, Solari’s method produces higher return level
estimates at each period with a broader 95% CI, suggesting increased uncertainty in its predictions.

888



Alif et al. Malaysian ]. Math. Sci. 19(3): 871-899(2025) 871 - 899

Table 7: Comparison of the three methods in terms of threshold uncertainties for parameter set 2. In this table, w is the determined threshold
value.

Method U CI Width of CI
Thompson | 12.804 | [7.450, 17.840] 10.390
Solari 19.455 | [9.252, 27.338] 18.086
Our 10.912 | [5.524, 17.363] 11.839

Table 7 provides a direct comparison of threshold uncertainties among the three methods for
parameter set 2, revealing that both Thompson’s method and our approach produce a 95% CI
of similar width, with our method achieving a slightly more precise determination of «. Solari’s
method, however, demonstrates lower accuracy in threshold estimation, accompanied by a notably
broader 95% CI. Regarding return period estimates and associated uncertainties for parameter set
2, Table 8 shows that Thompson’s method yields statistically insignificant return level estimates
across all return periods. Conversely, Solari’s method provides statistically significant return level
estimates, but with a wider 95% CI than those from our approach. Overall, it is safe to say from the
entire simulation study that our method consistently provides competitive results in all conditions.

Table 8: Comparison of the three methods in terms of return level uncertainties for parameter set 2 at 50, 100 and 1000 years return periods.

Method | Return period | Return Level CI
50 72.089 [29.440, 42.183]
Thompson 100 73.612 [30.042, 45.385]
1000 77.990 [31.011, 55.828]
50 39.480 [29.992, 45.504]
Solari 100 43.052 [30.738, 51.129]
1000 57.148 [32.030, 90.051]
50 34.919 [29.895, 41.619]
Our 100 36.344 [30.506, 44.684]
1000 40.357 [31.911, 54.771]

3.4 Practical applications
3.4.1 Daily rainfall in South West England

After analyzing the daily rainfall data for South West England, the automatic threshold selection
technique (AD-L-moments) was applied, yielding a threshold, uq of 33.668mm, which is a fair
determination as the maximum value is 86.6mm in the dataset. The scale and shape parameters,
calculated using L-moments, are 8.167 and 0.189, respectively. To assess model fit, we ran a di-
agnosis with the Probability-Probability (PP) and QQ plots to validate the model’s accuracy and
they showed a strong alignment with observed data. Additionally, we compared our automated
threshold approach with the MRL plot method as discussed by Coles et al. [13], which suggests
a threshold of 30mm, as depicted in Figure 1. According to Thompson et al. [49], a threshold is
generally defined at a point where the MRL plot exhibits linearity, subject to sampling variability.
According to Coles et al. [13], linearity is observable between thresholds of 30 and 60mm, though
at 60mm, limited data above this level may introduce sampling errors, as noted by Thompson et
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al. [49]. Thus, 30mm emerges as a practical threshold selection. A similar rationale can support
our automated threshold choice of 33.668mm. The MRL plot presents challenges in interpreta-
tion, with determining the most appropriate threshold often relying on subjective judgment by
the researcher. These interpretational complexities and the inherent subjectivity in MRL plot as-
sessments are well-illustrated by Thompson et al. [49]. In addition, we conducted diagnostic as-
sessments using PP and QQ plots for the model proposed by Coles, as well as models developed
according to the methods of Thompson and Solari. These diagnostics indicated an acceptable fit
across all models, demonstrating alignment comparable to the fit achieved with our proposed
method.

Mean Residual Life Plot Daily Rainfall in South-West England Scatter Plot
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Figure 1: Visualization of the MRL plot and scatter plot based on daily rainfall data from South-West England. In both plots, the dotted line
indicates the threshold selected by our method, while the solid line represents the threshold selected by Coles.

However, the automated threshold selection techniques stand out by eliminating the need for
user familiarity with complex graphical procedures and interpretations, thereby reducing subjec-
tive influence in the threshold selection process. Hence, in the automated procedures, the thresh-
old uncertainties can be quantified, unlike in the MRL plot technique. The 95% ClIs for all three
automated threshold selection techniques are presented in Table 9.

Table 9: Comparison of the three methods in terms of threshold uncertainties for South-West England daily rainfall dataset. In this table, u
is the determined threshold value.

Method u CI Width of CI
Thompson | 23.100 | [12.180, 24.100] 11.920
Solari 32.300 | [24.700, 59.395] 34.695
Our 33.668 | [23.777,35.037] 11.260

Table 9 reveals that our method consistently yields the narrowest CI, indicating the lowest level
of threshold uncertainty, while Solari’s method shows the widest interval, suggesting the greatest
uncertainty. The results in Table 9 emphasize that our method provides a more precise threshold
estimate, reducing the degree of uncertainty compared to other techniques. This highlights its reli-
ability in extreme value modeling, where precise threshold selection is crucial. Although Thomp-
son’s method achieves a similar width of uncertainty to our approach, it tends to determine the
threshold, u, much lower compared to both the automated threshold selection methods and that
of Coles. This discrepancy arises from a constraint within Thompson’s method, which stipulates
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a minimum of 100 exceedances above the chosen u. This requirement effectively pushes the deter-
mined u lower than any estimates generated by the other approaches discussed in this study. In
this case, Thompson’s method produces a threshold of 23.1mm, yielding 349 exceedances, while
our threshold of 33.668mm results in 93 exceedances. While Thompson’s method may seem to
benefit from a larger dataset, this does not necessarily translate to more accurate parameter esti-
mates.

Table 10: p-value comparison among all four methods using KS, AD and CVM GOF tests.

p-values
KS | AD |CVM
Thompson | 0.231 | 0.177 | 0.268
Solari 0.958 | 0.963 | 0.980
Coles 0.887 | 0.857 | 0.943
Our 0.966 | 0.989 | 0.981

Method

Including a greater number of moderate rainfall values could introduce bias, potentially un-
derestimating the return significant rainfall and compromising the representativeness of extreme
conditions, as noted by Liang et al. [28]. To show further evidence, Table 10 provides a direct
comparison of how well each threshold selection method aligns with the observed data through
the computed p-values while Table 11 shows the respective return level estimates along with 95%
CIs. These results allow us to assess which method produces the most statistically reliable model
fit for extreme value analysis. The p-values presented in Table 10 are derived from the KS, AD,
and CVM GOF tests, which assess the compatibility of the fitted GPD model with the observed
data under each threshold selection method. In each approach, the threshold u was determined
based on the respective methodology, whether through predefined statistical criteria, optimiza-
tion of GOF measures, or automated selection techniques. Once u was established, the parameters
& and £ were estimated, and the empirical CDF of the dataset was compared against the theoret-
ical GPD CDF. The test statistics were then computed and evaluated against their respective null
distributions to obtain the corresponding p-values.

Since parameter estimation influences the distribution of these test statistics, adjustments were
applied within the respective R packages used for computation. Specifically, the KS test was per-
formed using the stats package, while the AD and CVM tests were conducted using the goftest
package. These p-values quantify the extent to which the fitted GPD model aligns with the ob-
served data, with differences across methods reflecting variations in threshold selection and pa-
rameter estimation strategies. Table 10 shows that Thompson’s method yields lower p-values com-
pared to the other three methods, indicating a lesser degree of model compatibility with the data.
As defined by Asserstein and Lazar [51], the p-value is the probability of observing a test statistic
as extreme or more extreme than the observed one, assuming the null hypothesis holds. A smaller
p-value signifies a stronger deviation from the null hypothesis, or lower model compatibility, given
that the underlying assumptions are valid.

Additionally, as outlined in the ASA Statement on Statistical Significance and p-values and re-
iterated by Greenland et al. [24], p-values serve as a measure of the model’s fit, ranging from zero
(indicating no compatibility) to one (indicating complete compatibility) with the observed data.
From this perspective, the low p-values for Thompson’s method suggest it may be less aligned
with the data than the other methods, potentially affecting the GPD model’s reliability. In con-
trast, our approach produces the highest p-values as presented in Table 10, indicating a stronger
alignment between the model assumptions and the observed data. Table 11 reveals that, as an-
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ticipated, Thompson’s method consistently yields return level estimates at 50, 100, and 1000-year
return periods that are significantly lower than those generated by the other three methods. This
trend supports previous findings on the tendency of lower thresholds to yield underestimated
return levels, as discussed by Liang et al. [28]. Our automated threshold approach offers return
level estimates that align closely with those of both Coles’s and Solari’s methods, indicating com-
parable accuracy. It is noteworthy that, given the inherent subjectivity of the MRL plot technique,
the delta method described in [38] was applied to calculate return level uncertainties.

Table 11: Comparison of the four methods in terms of return level estimates and uncertainties for daily rainfall dataset of South-West
England at 50, 100 and 1000 years return periods.

Method | Return Period | Return Level CI Width of CI
50 82.432 [68.549, 100.847] 32.298
Thompson 100 98.049 [73.413,116.213] 42.800
1000 122.672 [90.104, 182.467] 92.363
50 92.946 [69.837,110.173] 40.336
Solari 100 107.277 [75.801,132.212] 56.411
1000 170.935 [86.837, 257.565] 170.728
50 92.336 [64.167,120.507] 56.340
Coles 100 106.342 [65.481,147.204] 81.723
1000 168.098 [51.841, 284.354] 232.513
50 91.0153 [70.894, 118.042] 47.148
Our 100 103.992 [76.502, 147.542] 71.040
1000 159.100 [93.274, 308.868] 215.594

Most 95% confidence intervals are quite similar across methods, except for the 1000-year re-
turn period, where our method, although not the widest, shows a broader uncertainty range.
However, due to the extended projection horizon of the 1000-year return level, some variability
in uncertainty is not unexpected and should not be a significant cause for concern in practical
applications involving rainfall extremes. Table 11 indicates that Thompson’s method yields the
narrowest return level uncertainty ranges for each return period. However, the return level values
themselves raise concerns about underestimation and potential model bias, which could impact
the reliability of predictions, especially for extreme values.

3.4.2 Daily closing prices of the Dow Jones index

The Dow Jones index data, as discussed in Section 1, offers an additional case for examining
the threshold exceedance model’s effectiveness. Due to the evident non-stationarity in the original
series X1, ..., X,, and the strong trend component visible in the left panel of Figure 2, a transfor-
mation is applied to address this.
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Figure 2: (a) Daily closing price of Dow Jones index. (b) Transformed daily returns of the Dow Jones Index.

Specifically, the data are transformed as X, = log(X;) —log(X;_1), and then rescaled by mul-
tiplying by 100 for ease of presentation. This transformation follows the approach suggested by
Coles et al. [13]. In Figure 2(b), the transformed series demonstrates a reasonable approximation
to stationarity, as further confirmed by the augmented Dickey-Fuller test, which produces a p-
value of 0.01, indicating strong evidence of stationarity. Following the analysis of the transformed
dataset, our automated threshold selection technique identified an optimal threshold, v = 0.932,
with corresponding parameter estimates of & = 0.540 and & = 0.084. We again conducted model
diagnostics, including the PP and QQ plots, which confirmed an excellent fit, as the model closely
aligns with observed data points. For comparison, we also applied the MRL plot approach out-
lined in [13], which suggested a threshold of @ = 2, as shown in Figure 3.

Mean Residual Life Plot Scatter Plot of Daily Closing Prices of the Dow Jones Index

Mean Excess
4
1
Index

-6 -4 -2 0 2 4 1996 1997 1998 1999

Threshold Year

Figure 3: Visualization of the MRL plot and scatter plot based on the transformed daily returns of the Dow Jones index. In both plots, the
dotted line indicates the threshold selected by our method, while the solid line represents the threshold selected by Coles.

The MRL plot also clearly shows linearity when the threshold is 0.932. The PP and QQ diag-
nostic plots for the fitted model suggested by Coles, Solari and Thompson also revealed a strong
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fit across all four methods, underscoring minimal practical discrepancies between them based on
these diagnostic visuals. This similarity highlights that the methods, despite varying approaches,
yield comparable graphical assessments. To deepen this comparison, examining the threshold
uncertainty quantifications for each automated method, along with p-values from model fitting
across all four techniques, can offer further meaningful insights. Table 12 presents a comparative
summary of the threshold uncertainty assessments for the three automated methods, applied to
the transformed daily returns of the Dow Jones index.

Table 12: Comparison of the three automated methods in terms of threshold uncertainties for transformed daily returns of the Dow Jones
index. In this table, u is the determined threshold value.

Method U CI Width of CI
Thompson | 1.049 | [0.821, 1.552] 0.731
Solari 1.693 | [0.752,3.205] 2.453
Our 0.932 | [0.713, 2.271] 1.558

In Sections 3.3 and 3.4.1, we explored some limitations inherent to Thompson’s method; how-
ever, this does not imply unreliability across all datasets. For example, in this case of transformed
daily returns of the Dow Jones index dataset, Thompson’s method demonstrates strong perfor-
mance alongside our proposed approach. As shown in Table 12, Thompson’s method achieves a
low uncertainty level, although not with the lowest u value, as that is produced by our method.
Solari’s method, on the other hand, yields the broadest 95% CI for . To evaluate further model fit
across all four techniques, we now examine the associated p-values. The p-values for KS, AD and
CVM GOF tests for the fitted model using all four methods are given in Table 13.

Table 13: p-value comparison among all four methods using KS, AD and CVM GOF tests.

p-values
KS | AD | CVM
Thompson | 0.974 | 0.995 | 0.985
Solari 0.948 | 0.990 | 0.993
Coles 0.885 | 0.633 | 0.982
Our 0.999 | 0.998 | 0.999

Method

Our fitted model demonstrates the highest p-values, indicating optimal compatibility with the
GPD model. Unlike the rainfall dataset, Thompson’s method also shows relatively high p-values
across all GOF tests, alongside Solari’s method. In contrast, Coles’s method exhibits lower p-values
specifically for the AD test, with a threshold estimate of v = 2, notably higher than those produced
by automated methods.
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Table 14: Comparison of the four methods in terms of return level estimates and uncertainties for transformed daily returns of the Dow
Jones index at 50, 100 and 1000 years return periods.

Method | Return Period | Return Level CI Width of CI
50 7414 [4.473,11.791] 7.318
Thompson 100 8.296 [4.658, 13.933] 9.275
1000 11.934 [5.182, 25.225] 20.043
50 8.243 [4.766,13.089] 8.323
Solari 100 9.502 [4.909, 16.312] 11.403
1000 15.586 [4.989, 37.595] 32.606
50 10.679 [-3.683, 25.040] 28.723
Coles 100 12.975 [-8.107, 34.057] 42.164
1000 24.910 [-40.826, 90.646 ] 131.472
50 7.322 [4.756, 15.830] 11.074
Our 100 8.121 [4.856,21.300] 16.444
1000 11.169 [5.070, 58.915] 53.845

A higher threshold can often ensure that extreme values are adequately representative, though
the reduced sample size can lead to increased variability in the estimates and uncertainty in pre-
dictions for extreme outcomes. Consequently, while the distributional estimates tend to exhibit
reduced bias, their variances become larger [28]. Using the delta method to calculate the 95% CI
for return levels (in this context, value-at-risk [13]), this increased variance translates into greater
uncertainties, as shown in Table 14. Our method achieves the lowest u, which allows for a larger
number of exceedances, enhancing the stability of model fitting. While Thompson’s method of-
fered a similar advantage in the South West England rainfall dataset (Section 3.4.1), it faced limita-
tions due to concerns over model fit and potential underestimation of return levels. In contrast, in
this analysis, our model not only exhibited the highest p-values among the four methods, confirm-
ing its strong compatibility with the GPD, but also produced comparable return level estimates.
As presented in Table 14, the return level estimates across our method, Thompson’s, and Solari’s
method remain closely aligned across all return periods. However, Coles’s method produces sub-
stantially higher estimates with considerably wider 95% Cls, as illustrated in Table 14. Among the
methods, Thompson’s yields the narrowest uncertainties for return level estimates at each return
period, underscoring its precision in this specific context.

4 Conclusion

Based on the comprehensive results and analysis in this paper, our proposed automated thresh-
old selection method demonstrates consistent accuracy, reliability, and low uncertainty across di-
verse datasets, particularly when compared to existing methods by Solari et al. [44], Coles et al.
[13] and Thompson et al. [49]. Throughout the simulation study, AD-L-moments and CVM-L-
moments combinations emerged as robust choices, yielding minimal bias, RMSE, and SE, which
affirms their suitability for GPD modeling under varying conditions. In real-data applications,
such as the South West England rainfall and Dow Jones index datasets, our approach effectively
addresses limitations in existing threshold selection techniques by minimizing subjective bias and
ensuring model compatibility, as evidenced by high p-values and return level estimates that are
both logically consistent and competitively robust in comparison to established methods. Unlike
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traditional approaches like the MRL plot, our automated method enhances objectivity and accu-
racy while providing narrower confidence intervals for threshold estimates and return levels.

Furthermore, the comparative studies underscore our method’s advantage in reliably identify-
ing the optimal threshold while maintaining high compatibility with the GPD model. Although
Solari and Thompson’s methods provide accurate estimates for certain datasets, they exhibit in-
creased uncertainties and limitations in determining threshold values in some instances. This
distinction highlights our method’s ability to balance accuracy and model stability. Therefore,
by integrating this automated approach into extreme value analysis, we offer a valuable tool that
improves threshold selection processes and extends the reliability of GPD modeling across appli-
cations in environmental science, finance, and risk management, advancing the field’s capability
to handle rare and extreme events effectively. While our proposed method achieves a strong bal-
ance of reliability, precision, and compatibility within the GPD framework, opportunities remain
for further refinement. We anticipate that with targeted enhancements, future approaches could
narrow both threshold and return level uncertainties even further. These advancements may help
establish this methodology as a definitive tool for EVA in GPD modeling, paving the way for even
greater accuracy and robustness in practical applications.
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